DEPT. OF MATHEMATICS
 JHARGRAM RAJ COLLEGE

B.Sc (Honours) Sem - IV , $1^{\text {st }}$ INTERNAL ASSESSMENT, 2018-19

Sub: MATHEMATICS, Paper- CC 8

Full Marks: 10
Time: 30 m .
Answer the following questions:
$(2 \times 5=10)$

1. Let $f:[a, b] \rightarrow R$ be a bounded function on $[a, b]$ and P be a partition of $[a, b]$. Then prove the following inequality $-L(P, f) \leq U(P, f)$.
[Symbols have their usual meaning]
2. Let $f:[a, b] \rightarrow R$ be a bounded function on $[a, b]$ and P, Q be any two partitions of the interval $[a, b]$. Prove that $L(P, f) \leq U(Q, f)$.
3. Let us consider the function $f:[0,1] \rightarrow R$ defined as $y=f(x)=\left\{\begin{array}{l}1, \text { if } x \text { is rational } \\ 0, \text { if } x \text { is irrational }\end{array}\right.$ Show that the function is not Riemann Integrable on $[0,1]$.
4. Let a function $f:[a, b] \rightarrow R$ be continuous on the closed and bounded interval $[a, b]$. Then prove that the function is Riemann Integrable function on $[a, b]$.
5. Let $f:[a, b] \rightarrow R$ be bounded and monotone increasing function on the closed and bounded interval $[a, b]$. If P_{n} be a partition of the interval $[a, b]$ dividing into n number of sub - intervals of equal length, prove that $\int_{a}^{b} f \leq U\left(P_{n}, f\right) \leq \int_{a}^{b} f+$ $b-a n f b-f a$.

DEPT. OF MATHEMATICS
 JHARGRAM RAJ COLLEGE

B.Sc (Honours) Sem - IV, $2^{\text {nd }}$ INTERNAL ASSESSMENT, 2018-19
 Sub: MATHEMATICS, Paper- CC 8

Full Marks: 10
Time: 30 m .
Answer the following questions:
$(2 \times 5=10)$

1. Let $f:[a, b] \rightarrow R$ be defined as $f(x)=\left\{\begin{array}{c}a_{n+1}, \text { if } x=n \in[0,2019] \cap Z \\ 0 \text {, otherwise }\end{array}\right.$. Prove that the function f is Riemann Integrable and evaluate $\int_{0}^{2019} f$.
[Symbols have their usual meaning]
2. Let $f(x)=[x], x \in[1,3] ; \varphi(x)=\left\{\begin{array}{c}x, x \in[1,2] \\ 2 x-2, x \in] 2,3]\end{array}\right.$. Show that the given function f is Riemann Integrable function and without evaluating the integral show that $\int_{1}^{3} f=\varphi(3)-\varphi(1)$.
3. Let $f, g:[a, b] \rightarrow R$ be both Riemann Integrable functions on $[a, b]$. Prove that $\max (f, g):[a, b] \rightarrow R$ is also Riemann Integrable function.
4. For each $n \in N$, let $f_{n}(x)=x-\frac{1}{n}, g_{n}(x)=x+\frac{2}{n}, 0 \leq x<\infty$. Show that the given sequences are uniformly convergent on $\left[0, \infty\left[\right.\right.$. Determine the nature of the sequence $\left\{f_{n} g_{n}\right\}$.
5. Prove that the uniform limit of a sequence of continuous functions is continuous on the same domain of definition.

DEPT. OF MATHEMATICS
 JHARGRAM RAJ COLLEGE

B.Sc (Honours) Sem - IV, $2^{\text {nd }}$ INTERNAL ASSESSMENT, 2018-19 Sub: MATHEMATICS, Paper- CC 8

Full Marks: 10
Time: 30 m .
Answer the following questions:

1. Let $f:[a, b] \rightarrow R$ be defined as $f(x)=\left\{\begin{array}{c}a_{n+1}, \text { if } x=n \in[0,2019] \cap Z \text {. Prove that the function } f \text { is } \\ 0 \text {, otherwise }\end{array}\right.$. Riemann Integrable and evaluate $\int_{0}^{2019} f$.
[Symbols have their usual meaning]
2. Let $f(x)=[x], x \in[1,3] ; \varphi(x)=\left\{\begin{array}{c}x, x \in[1,2] \\ 2 x-2, x \in] 2,3]\end{array}\right.$. Show that the given function f is Riemann Integrable function and without evaluating the integral show that $\int_{1}^{3} f=\varphi(3)-\varphi(1)$.
3. Let $f, g:[a, b] \rightarrow R$ be both Riemann Integrable functions on $[a, b]$. Prove that $\max (f, g):[a, b] \rightarrow R$ is also Riemann Integrable function.
4. For each $n \in N$, let $f_{n}(x)=x-\frac{1}{n}, g_{n}(x)=x+\frac{2}{n}, 0 \leq x<\infty$. Show that the given sequences are uniformly convergent on $\left[0, \infty\left[\right.\right.$. Determine the nature of the sequence $\left\{f_{n} g_{n}\right\}$.
5. Prove that the uniform limit of a sequence of continuous functions is continuous on the same domain of definition.
