DEPT. OF MATHEMATICS JHARGRAM RAJ COLLEGE

B.Sc (Honours) Sem - IV , 1st INTERNAL ASSESSMENT, 2018-19 Sub: MATHEMATICS, Paper- CC 8

Full Marks: 10

Time: 30 m.

Answer the following questions:

 $(2 \times 5 = 10)$

- **01.** Let $f: [a, b] \to R$ be a bounded function on [a, b] and P be a partition of [a, b]. Then prove the following inequality $L(P, f) \le U(P, f)$. [Symbols have their usual meaning]
- **02.** Let $f: [a, b] \to R$ be a bounded function on [a, b] and P, Q be any two partitions of the interval [a, b]. Prove that $L(P, f) \le U(Q, f)$.
- **03.** Let us consider the function $f: [0,1] \to R$ defined as $y = f(x) = \begin{cases} 1, & \text{if } x \text{ is rational} \\ 0, & \text{if } x \text{ is irrational} \end{cases}$ Show that the function is not *Riemann Integrable* on [0,1].
- **04.** Let a function $f:[a,b] \rightarrow R$ be continuous on the closed and bounded interval [a,b]. Then prove that the function is *Riemann Integrable* function on [a,b].
- **05.** Let $f:[a,b] \to R$ be bounded and monotone increasing function on the closed and bounded interval [a,b]. If P_n be a partition of the interval [a,b] dividing into n number of sub intervals of equal length, prove that $\int_a^b f \le U(P_n, f) \le \int_a^b f + b-anfb-fa$.

DEPT. OF MATHEMATICS JHARGRAM RAJ COLLEGE

B.Sc (Honours) Sem - IV, 2nd INTERNAL ASSESSMENT, 2018-19 Sub: MATHEMATICS, Paper- CC 8

Full Marks: 10

Answer the following questions:

01. Let $f:[a,b] \to R$ be defined as $f(x) = \begin{cases} a_{n+1}, & \text{if } x = n \in [0,2019] \cap Z \\ 0, & \text{otherwise} \end{cases}$. Prove that the function f is Riemann Integrable and evaluate $\int_0^{2019} f$. [Symbols have their usual meaning]

02. Let $f(x) = [x], x \in [1,3]; \varphi(x) = \begin{cases} x, x \in [1,2] \\ 2x - 2, x \in [2,3] \end{cases}$. Show that the given function *f* is Riemann

Integrable function and without evaluating the integral show that $\int_1^3 f = \varphi(3) - \varphi(1)$.

- **03.** Let $f, g: [a, b] \to R$ be both Riemann Integrable functions on [a, b]. Prove that $max(f, g): [a, b] \to R$ is also Riemann Integrable function.
- **04.** For each $n \in N$, let $f_n(x) = x \frac{1}{n}$, $g_n(x) = x + \frac{2}{n}$, $0 \le x < \infty$. Show that the given sequences are uniformly convergent on $[0, \infty[$. Determine the nature of the sequence $\{f_n g_n\}$.
- **05.** Prove that the uniform limit of a sequence of continuous functions is continuous on the same domain of definition.

```
*******
```

DEPT. OF MATHEMATICS JHARGRAM RAJ COLLEGE

B.Sc (Honours) Sem - IV, 2nd INTERNAL ASSESSMENT, 2018-19 Sub: MATHEMATICS, Paper- CC 8

Full Marks: 10

Answer the following questions:

- **01.** Let $f: [a, b] \to R$ be defined as $f(x) = \begin{cases} a_{n+1}, & \text{if } x = n \in [0, 2019] \cap Z \\ 0, & \text{otherwise} \end{cases}$. Prove that the function f is Riemann Integrable and evaluate $\int_0^{2019} f$.
- **02.** Let $f(x) = [x], x \in [1,3]; \varphi(x) = \begin{cases} x, x \in [1,2] \\ 2x 2, x \in [2,3] \end{cases}$. Show that the given function *f* is Riemann

Integrable function and without evaluating the integral show that $\int_1^3 f = \varphi(3) - \varphi(1)$.

- **03.** Let $f, g: [a, b] \to R$ be both Riemann Integrable functions on [a, b]. Prove that $max(f, g): [a, b] \to R$ is also Riemann Integrable function.
- **04.** For each $n \in N$, let $f_n(x) = x \frac{1}{n}$, $g_n(x) = x + \frac{2}{n}$, $0 \le x < \infty$. Show that the given sequences are uniformly convergent on $[0, \infty[$. Determine the nature of the sequence $\{f_n g_n\}$.
- **05.** Prove that the uniform limit of a sequence of continuous functions is continuous on the same domain of definition.

Time: 30 m.

Time: 30 m.

$$(\mathbf{2} \times \mathbf{5} = \mathbf{10})$$

$$(2 \times 5 = 10)$$